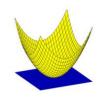


FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS PRIMER EXAMEN FINAL COLEGIADO



GEOMETRÍA ANALÍTICA

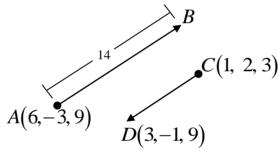
C

SEMESTRE. 2012-1	DURACION MAXIMA: 2 noras 30 minutos.		
Nombre :	No. de cuenta :	Firma :	

- Sea la curva de ecuación polar $r = 2 sen 3\theta$
 - a) Obtener las coordenadas de sus puntos de intersección con la recta a 90°.
 - b) Determinar si es simétrica respecto al eje polar.
 - c) Bosquejar su gráfica.

12 puntos

Sea el segmento dirigido \overline{AB} , paralelo al segmento dirigido \overline{CD} , como se muestra en la figura:



Empleando álgebra vectorial, determinar las coordenadas del punto B.

13 puntos

Obtener los vectores \bar{a} , \bar{b} y \bar{c} de módulo 5, 7 y 3 respectivamente, tales que \bar{a} es paralelo al vector $\bar{v} = (6, -2, 3)$, \bar{b} tiene como cosenos directores a $\cos \alpha = -\frac{1}{3}$ $y \cos \beta = \cos \gamma$, y \bar{c} es perpendicular tanto al vector $\bar{v} = 3i - 4k$ como al vector $\bar{w} = (-3, 1, 4)$.

15 puntos

Sean las rectas
$$L_1$$
: $p = (1,2,1) + t (1,-1,-2)$ y L_2 :
$$\begin{cases} x = \lambda \\ y = 7 + 3\lambda \\ z = 4 - \lambda \end{cases}$$

En caso de que:

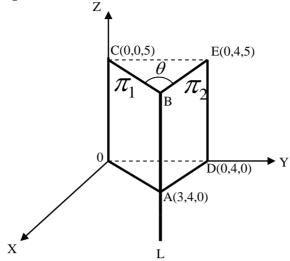
 L_1 y L_2 sean paralelas, obtener la ecuación cartesiana del plano que las contiene.

 L_1 y L_2 se crucen, calcular la distancia entre ellas.

 L_1 y L_2 se corten, determinar las coordenadas de su punto de intersección.

15 puntos

5) Sean los planos π_1 y π_2 como se muestran en la figura:



Obtener:

- a) La ecuación cartesiana de cada uno de los planos π_1 y π_2 .
- b) El ángulo θ que se forma entre los planos π_1 y π_2 .
- c) Unas ecuaciones paramétricas de la recta L intersección de π_1 y π_2 .
- d) La distancia del origen de coordenadas al plano π_2 .

15 puntos

Sea la curva C representada por la ecuación vectorial

$$\overline{p} = \left(\frac{3}{\sqrt{t+4}}\right)i + \left(\sqrt{25-t^2}\right)j + \left(\frac{6}{\sqrt{t+4}}+1\right)k$$

Obtener:

- a) Unas ecuaciones paramétricas de C.
- b) El intervalo paramétrico.
- c) El conjunto de valores que pueden tomar las coordenadas "x", "y" y "z" de los puntos de la curva.

15 puntos

Identificar la superficie representada analíticamente por cada una de las siguientes ecuaciones:

a)
$$z^2 = y^2 - x^2$$

b)
$$z^2 - y^2 - x^2 = -1$$

c)
$$4(x-1)^2-9y^2+z=0$$

Nota: La identificación consiste en proporcionar el nombre, así como dar algunas de sus características.

15 puntos