



CÁLCULO VECTORIAL

Página 1

1) Calcular las coordenadas del punto P de la curva: $\bar{r}(t) = (1-2t)i + (t^2)j + (2e^{2(t-1)})k$ en el que el vector $\bar{r}(t)$ es paralelo a $\bar{r}(t)$.

SOLUCIÓN

$$P(-1, 1, 2)$$

2) Una partícula se mueve a lo largo de la trayectoria cuya ecuación vectorial es $\bar{r}(t) = (e^t \cos t)i + (e^t sent)j$, donde t es el tiempo. Demostrar que el ángulo entre el vector de posición y el vector velocidad es constante y determinar el valor de dicho ángulo.

SOLUCIÓN

$$\theta = \frac{\pi}{4}$$

3) Determinar una ecuación vectorial de la curva: $C:\begin{cases} x^2+y^2=9\\ 3-x=y \end{cases}$. Trazar la gráfica de C.

SOLUCIÓN

 $\vec{r} = (3)i + (1)k$ y $\vec{r} = (3)j + (1)k$, dibujo a criterio del profesor.

4) Determinar si la curva de ecuación vectorial r(t) = (sent)i + (cost)k está contenida en un plano.

SOLUCIÓN

La curva es plana.

5) Sea C la curva de ecuaciones paramétricas x = t, $y = t^2$, $z = \frac{2}{3}t^3$.

Calcular:

- a) La curvatura de C
- b) La torsión de C

Página 2

SOLUCIÓN

$$\kappa = \frac{2}{4 t^4 + 4 t^2 + 1}$$

$$\tau = \frac{2}{4 t^4 + 4 t^2 + 1}$$

- 6) Sea la curva dada por $r(t) = (t^3 t^2)i + (t^2 + 2t^3)j + (3t^2)k$
 - a) Comprobar que dicha curva es plana.
 - b) Obtener la ecuación cartesiana del plano que contiene a dicha curva.

SOLUCIÓN

- a) A criterio del profesor.
- b) 2x y + z = 0
- 7) Sea C la curva c: $r(t) = (2+t)i + (1+t^2)j + (3t+t^2)k$. Determinar si la curva es plana; en caso afirmativo, obtener la ecuación cartesiana del plano que la contiene.

SOLUCIÓN

La curva C es plana y está contenida en el plano z = 3x + y - 7.

8) Dada la curva C cuya ecuación vectorial es obtener las coordenadas del centro de la circunferencia de curvatura de C en el punto: $r(t) = \left(2t - \frac{2}{3}t^3\right)i + \left(2t^2\right)j + \left(2t + \frac{2}{3}t^3\right)k$ Obtener las coordenadas del centro de la circunferencia de curvatura de C en el punto $P\left(\frac{4}{3}, 2, \frac{8}{3}\right)$.

SOLUCIÓN

$$C\left(-\frac{20}{3},2,\frac{8}{3}\right)$$

9) Calcular el radio de curvatura del tiro parabólico en el punto más alto. La ecuación de la posición de la partícula es: $r(t) = (4+6t)i + (6+8t-5t^2)j$.

Página 3

SOLUCIÓN

$$\rho = \frac{36}{10} = 3.6$$

10) Sea la curva C de ecuación vectorial $r(t) = \left(\frac{1}{2}e^{t} \operatorname{sen} t\right)i - \left(\frac{1}{\sqrt{2}}e^{t}\right)j + \left(\frac{1}{2}e^{t} \cos t\right)k$.

- a) Obtener la ecuación vectorial de C en términos de su longitud de arco s de modo que cuando s=1 se tiene que t=0.
- b) Calcular el vector tangente unitario a la curva C en el punto $t = \pi$.

SOLUCIÓN

a)
$$\overline{r}(s) = \left(\frac{s}{2}sen(\ln s)\right)i - \left(\frac{s}{\sqrt{2}}\right)j + \left(\frac{s}{2}\cos(\ln s)\right)k$$

b)
$$\left(-\frac{1}{2}, -\frac{1}{\sqrt{2}}, -\frac{1}{2}\right)$$

11) La ecuación vectorial de una curva C, que se genera por la intersección de un cilindro parabólico y un plano, está dada por: $r(t) = \left(2 - \frac{t^2}{3} + \frac{t}{2}\right)i + t^2j + tk$

a) Obtener las ecuaciones de las superficies citadas.

- b) Obtener el vector normal principal a r(t) cuando $\frac{d\overline{r}}{dt} = -\frac{1}{6}i + 2j + k$.
- c) La ecuación del plano osculador para la condición anterior.

SOLUCIÓN

a) Ecuación del plano: 6x+2y-3z=12. Ecuación del cilindro: $y=z^2$.

b)
$$\overline{N} = \frac{1}{\sqrt{48^2 + 33^2 + 74^2}} \left(-48 \ i + 33 \ j - 74 \ k \right)$$

c) 6x + 2y - 3z = 12

12) Sea la curva $C: r(s) = (-sen(s), 0, \cos(s))$, donde s es el parámetro longitud de arco. Determinar, para el punto P(0,0,-1) que pertenece a la curva:

Página 4

a) Los vectores \overline{T} , \overline{N} y \overline{B} .

b) La curvatura y la torsión de la curva.

c) La ecuación cartesiana del plano osculador.

SOLUCIÓN

a) $\overline{T}(1,0,0)$, $\overline{N}(0,0,1)$, $\overline{B}(0,-1,0)$.

b) $k = 1, \tau = 0.$

c) Plano osculador: y = 0.

13) Sea C la curva cuya ecuación vectorial es

$$\bar{r}(t) = (2t^2 + 2)i + (at^3 - t^3)j + (t^4 + t^2 + 4)k$$
.

a) Determinar el valor de la constante a de modo que C sea plana.

b) Calcular la curvatura de C en el punto donde t = 1.

SOLUCIÓN

a) a = 1

b)
$$\frac{4}{13\sqrt{13}}$$

14) Sea C la curva cuya ecuación vectorial es: $r(t) = ti + t^2 j + t^3 k$.

a) Calcular la curvatura y torsión de la curva C en el punto P(2,4,8).

b) Determinar si la curva C es plana.

SOLUCIÓN

a)
$$\kappa = \frac{\sqrt{724}}{\left(\sqrt{161}\right)^3}$$
; $\tau = \frac{3}{181}$

b) La curva no es plana.

15) Calcular la curvatura de la hélice circular $r(t) = a \cos t \ i + a \operatorname{sent} \ j + bt \ k$ para a > 0.

$$\kappa = \frac{a}{a^2 + b^2}$$

Página 5

16) La ecuación vectorial de una curva C está dada por: $r(t) = t i + t^2 j + (4 - t^2 + t)k$.

- a) Obtener el vector normal \overline{N} .
- b) Determinar si la curva es plana y en caso afirmativo obtener la ecuación del plano que la contiene.

SOLUCIÓN

a)
$$\overline{N} = \frac{(1-4t)i+(2-2t)j+(-2t-1)k}{\sqrt{24t^2-12t+6}}$$

b) Plano osculador x-y-z+4=0.

17) Demostrar que
$$\frac{d\overline{T}}{ds}\frac{d\overline{B}}{ds} = -\kappa\tau$$
.

SOLUCIÓN

A criterio del profesor.

18) Calcular la curvatura de la elipse de ecuación:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
.

SOLUCIÓN

$$\kappa = \frac{a^4 b^4}{\left(a^4 y^2 + b^4 x^2\right)^{3/2}}.$$

19) Sea la curva $C: \begin{cases} x^2 + y^2 = z \\ y = x \end{cases}$. Determinar los vectores \overline{T} , \overline{B} , $y = \overline{N}$, así como la curvatura y la torsión de la curva, para el punto P(1,1,2).

$$\overline{T} = \left(\frac{1}{\sqrt{18}}, \frac{1}{\sqrt{18}}, \frac{4}{\sqrt{18}}\right); \quad \overline{N} = \left(-\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right); \quad \overline{B} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right); \quad \kappa = \frac{2}{27}; \quad \tau = 0 \ .$$

Página 6

20) Sea la curva C representada por:

$$C: \begin{cases} x = y \\ x^2 + y^2 = 4 - z \end{cases}$$

Determinar, para el punto P(0,0,4):

- a) Los vectores \overline{T} , \overline{N} y \overline{B} .
- b) La curvatura y la torsión.
- c) La ecuación cartesiana del plano oscular y la del plano rectificante.

SOLUCIÓN

a)
$$\overline{T} = \frac{(1,1,0)}{\sqrt{2}}; \overline{N} = (0,0,-1); \overline{B} = \frac{(-1,1,0)}{\sqrt{2}}$$

- b) $\kappa = 2$; $\tau = 0$
- c) plano oscular: x = y; plano rectificante: z = 4
- **21**) Sea la curva C representada por: r(t) = (t sen t)i (cos t)j

Determinar:

- a) El triedro móvil de vectores $(\overline{T}, \overline{N}, \overline{N}, \overline{B})$ en el punto $P(\pi, 1)$.
- b) Si r(t) es una función vectorial de módulo constante.
- c) La longitud de la curva entre los puntos A(0,-1) y $B(2\pi,-1)$.

SOLUCIÓN

- a) $\overline{T} = i$, $\overline{N} j$, $\overline{B} = -k$.
- b) $\overline{r} = \frac{d\overline{r}}{dt} \neq 0 : \overline{r}(t)$ no es módulo constante.
- c) 4 u. de longitud
- **22)** Sea la curva C: $r = (r)e_r + (6)e_z$ en coordenadas cilíndricas circulares. Determinar si la curva es plana; en caso afirmativo, determinar la ecuación del plano que la contiene.

SOLUCIÓN

C es plana y está contenida en el plano z = 6.

Página 7

23) Sea la curva C: $r(s) = (sen \ s, 3, cos \ s)$, donde "s" es el parámetro longitud de arco. Determinar, para el punto P(-1,3,0):

- a) Los vectores \overline{T} , \overline{N} y \overline{B} .
- b) La curvatura y la torsión.
- c) La ecuación cartesiana del plano osculador.
- d) Las coordenadas del centro de curvatura.
- e) Unas ecuaciones cartesianas de la circunferencia de curvatura.

SOLUCIÓN

- a) $\overline{T} = (0,0,1), \ \overline{N} = (1,0,0), \ \overline{B} = (0,1,0).$
- b) $k = 1, \tau = 0.$
- c) Plano osculador: y = 3.
- d) C(0,3,0)

e)
$$\begin{cases} x^2 + (y-3)^2 + z^2 = 1 \\ y = 3 \end{cases}$$
 o
$$\begin{cases} x^2 + z^2 = 1 \\ y = 3 \end{cases}$$

24) La posición de una partícula en movimiento está dada por: $r(t) = 2t \ i - 3t^2 \ j + \frac{3}{2} k$ donde t es tiempo. Obtener para el instante t = 0.25 segundos:

- a) El vector velocidad (\overline{v}) de la partícula,
- b) El vector tangente unitario (\overline{T}) a la trayectoria de la partícula.
- c) El vector aceleración tangencial (\bar{a}_T) de la partícula.
- d) El vector aceleración normal (\bar{a}_N) de la partícula.

SOLUCIÓN

a)
$$\overline{v} = 2i - \frac{3}{2}j$$
 b) $\overline{T} = \frac{2}{5}\left(2i - \frac{3}{2}j\right)$ c) $\overline{a_T} = \frac{72}{25}i - \frac{54}{25}j$ d) $\overline{a_n} = -\frac{72}{25}i - \frac{96}{25}j$

25) La trayectoria de una partícula esta dada por la expresión $r = t^2$ i - t $j + t^3$ k donde t es el tiempo. Calcular las componentes tangencial y normal de su aceleración en el punto donde t = 1.

Página 8

SOLUCIÓN

 $\overline{a} = 5.88\overline{\text{T}} + 2.33\overline{\text{N}}; \quad a_T = 5.879747, \quad a_N = 2.329929.$

26) Una partícula se desplaza a lo largo de la curva:

$$C: \overline{r}(t) = (\cos t + sent)i + (sent - \cos t)j$$
; $t \ge 0$

Determinar las componentes tangencial y normal de la aceleración.

SOLUCIÓN

$$a_T = 0;$$
 $a_N = \sqrt{2}$

27) Una partícula se desplaza a lo largo de la curva $C: x^2 - y^2 = 1$, con x < 0. Calcular los vectores aceleración normal y aceleración tangencial en el punto P(-1,0).

SOLUCIÓN

$$\overline{a}_T = \overline{0}, \ \overline{a}_N = (-1,0).$$

- **28)** Una partícula se desplaza a lo largo de una curva C: $\bar{r}(t) = \left(te^t\right)\mathbf{i} + \left(e^t\right)\mathbf{j} + \left(e^t\right)\mathbf{k}$, donde t es el tiempo. Calcular para el punto P(e,e,e):
- a) Los vectores aceleración normal y aceleración tangencial.
- b) Los vectores \overline{T} y \overline{N} .

SOLUCIÓN

a)
$$\overline{a}_T = \frac{(8e, 4e, 4e)}{3}, \ \overline{a}_N = \frac{(e, -e, -e)}{3}$$

b)
$$\overline{T} = \frac{(2,1,1)}{\sqrt{6}}, \ \overline{N} = \frac{(1,-1,-1)}{\sqrt{3}}.$$

29) Una partícula se desplaza a lo largo de la curva C representada por $\overline{r} = \overline{r}(t)$, donde t es el tiempo. Si en el instante $t = t_0$ la rapidez es mínima, el módulo de la velocidad es igual a 1 y $\overline{a} = (0,1,0)$, calcular la curvatura de la curva C en el punto para el cual $t = t_0$.

SOLUCION

k = 1.

30) La trayectoria de una partícula está dada por $\bar{r}(t) = (t) \, i + (t^2) j + (4) k$, donde t es el tiempo. Determinar las coordenadas del punto P en el cual las componentes normal y tangencial de la aceleración son iguales entre sí.

SOLUCIÓN

$$P\left(\frac{1}{2},\frac{1}{4},4\right)$$

31) Calcular el ángulo de intersección entre las superficies:

$$S_1: 5x - y - 3z^2 = 0$$

у

$$S_2: \begin{cases} x = u \\ y = v \\ z = \frac{uv}{4u - v} \end{cases}$$

en el punto A(1,2,1).

SOLUCIÓN

 $\theta = 90^{\circ}$

32) Sean la parábola C y la superficie S definidas por las ecuaciones

$$C: \overline{r_1}(t) = (t^2 - 2t + 1)\mathbf{i} + (t)\mathbf{k}$$

$$S: \overline{r_2}(u, v) = (\sec(u)\cos(v))\mathbf{i} + (\tan(u))\mathbf{j} + (\sec(u)sen(v))\mathbf{k}$$

El punto de intersección de C con S es el vértice de la parábola. Determinar el ángulo de intersección entre la curva C y la superficie S.

SOLUCIÓN

 $\theta = 90^{\circ}$

Página 10

33) Calcular el ángulo α de intersección entre la superficie S y la curva C, cuyas ecuaciones vectoriales son:

$$S: \overline{r_1}(u,v) = (u+2v)i + (5uv)j + (v-2u)k$$

$$C: \overline{r_2}(t) = (3-3t)i + (5-5t-10t^2)j + (-4t-1)k$$

en el punto donde v = 1.

SOLUCIÓN

 $\alpha = 0^{\circ}$.

34) Obtener la ecuación cartesiana del plano tangente a la superficie cuya ecuación vectorial es $\bar{r}(u,v) = (v^3 - u^2)\mathbf{i} + (3v - 2u)\mathbf{j} + (uv + 2v)\mathbf{k}$, en el punto P(-1,-2,0).

SOLUCIÓN

35) Sea: $r(s,t) = (2s)i + (sent + 2s \cos t)j + (\cos t - 2s \operatorname{sent})k$ una ecuación vectorial de la superficie S.

- a) Identificar la superficie S.
- b) Obtener una ecuación vectorial del plano tangente a S en el punto $P(1,\sqrt{2},0)$.

SOLUCIÓN

- a) Hiperboloide de un manto.
- b) $-2x + 2\sqrt{2}y = 2$.

36) La superficie $S: \bar{r}(u,v) = (\sec u \cos v) \mathbf{i} + (\tan u) \mathbf{j} + (\sec u \sec v) \mathbf{k}$ y la recta $L: \bar{r}(t) = (1+t)\mathbf{i} + (1-t)\mathbf{j} + (t+1)\mathbf{k}$ se intersecan en el punto P(1,1,1). Calcular el ángulo que forman la recta L y la superficie S.

SOLUCIÓN

 $\theta = 90^{\circ}$

Página 11

37) Dadas las superficies de ecuaciones vectoriales

$$S_1: r(s,t) = (s\cos t)i + (s\sin t)j + (s^2)k, \quad S_2: r(u,v) = (3\cos u)i + (3\sin u)j + (v)k.$$

Obtener los vectores \overline{T} , \overline{N} y \overline{B} de la curva de intersección de S_1 y S_2 en el punto (3,0,9).

SOLUCIÓN

$$\overline{T} = j; \overline{N} = -i; \overline{B} = k.$$

38) Obtener la ecuación cartesiana del plano tangente a la superficie de ecuaciones paramétricas. $S: \begin{cases} x+y+\alpha z = \alpha \\ \alpha x - \alpha y - z = 1 \end{cases}$ en el punto (1, 3, -3).

SOLUCIÓN

$$x-3y-3z-1=0$$

39) Obtener la ecuación del plano tangente a la superficie S cuya ecuación vectorial es $\overline{r}(u,v) = (\cos u \operatorname{sen} v)i + (\operatorname{sen} u \operatorname{sen} v)j + (\cos v)k$ con $0 \le u \le 2\pi$ y $0 \le v \le \frac{\pi}{2}$ en el punto donde: $u = \pi$, $v = \frac{\pi}{4}$.

SOLUCIÓN

$$x - z + \sqrt{2} = 0$$

40) Calcular la ecuación del plano tangente a la superficie de ecuación vectorial r(u,v) = (u sen(u) cos(v))i + (u cos(u) cos(v))j + (u sen(v))k en el punto $P(0,\pi,0)$.

$$x - \pi y + \pi^2 = 0.$$

- **41**) Sea la curva C que resulta de la intersección entre las superficies $S_1: \overline{r}(s,t) = (s+t)i + (4st)j + (s-t)k$ y $S_2: \overline{r}(u,v) = (u)i + (v)j + (2)k$.
 - a) Identificar las superficies.
 - b) A partir de las ecuaciones vectoriales de S_1 y S_2 , determinar la ecuación cartesiana del plano normal a la curva C, en el punto P(0, -4, 2).

Página 12

SOLUCIÓN

- a) S_1 : paraboloide hiperbólico; S_2 : plano horizontal
- b) x = 0
- **42)** Obtener la ecuación cartesiana del plano tangente a la superficie representada por r(u,v) = (u+v+1)i + (2u+3v)j + (u+2v-2)k, en el punto para el cual u=2 y v=1.

SOLUCIÓN

$$x-y+z+1=0$$
.

43) Determinar la ecuación cartesiana del plano tangente a la superficie de ecuación r(s,t) = (2(s+t))i + (2(s-t))j + (16st)k en el punto P(2,-2,0).

SOLUCIÓN

$$4x + 4y - z = 0$$
.

44) Demostrar que las superficies $S_1: x-2y+3z=0$ y $S_2: \overline{r}(\theta, \phi) = (6\cos\theta sen\phi, 6sen\theta sen\phi, 6\cos\phi)$ se intersecan en ángulo recto.

SOLUCIÓN

A criterio del profesor.

45) Determinar la expresión en coordenadas cilíndricas del vector de posición de cualquier punto de la superficie: $x^2 + y^2 = r^2$.

$$\vec{r} = (r)\hat{e}_r + (z)\hat{e}_z$$

- **46**) Sea la transformación $T:\begin{cases} u=y-x \\ v=x+y \end{cases}$
 - a) Determinar si el sistema de coordenadas (u,v) es ortogonal.
 - b) Obtener los factores de escala h_u y h_v .

Página 13

el campo vectorial $\overline{F}(u,v) = (uv)\overline{e_u} + (2uv)\overline{e_v}$ c) Determinar si conservativo.

d) Obtener los vectores unitarios $\overline{e_u}$ y $\overline{e_v}$.

e) Transformar el vector $\overline{a} = -\mathbf{i} + \mathbf{j}$ a la base $\{\overline{e_u}, \overline{e_v}\}$.

SOLUCIÓN

a) Sí es ortogonal.

b)
$$h_u = \frac{1}{\sqrt{2}}, h_v = \frac{1}{\sqrt{2}}$$

c)
$$\overline{F}$$
 es conservativo.
d) $\overline{e}_u = \frac{(-1,1)}{\sqrt{2}}, \ \overline{e}_v = \frac{(1,1)}{\sqrt{2}}$

e)
$$\bar{a} = -\mathbf{i} + \mathbf{j} = \sqrt{2} \ \bar{e}_u$$

47) Sea la transformación $T: \begin{cases} u = x - 2y \\ v = x + y \end{cases}$

a) Determinar si el sistema de coordenadas (u,v) es ortogonal.

b) Obtener las ecuaciones para la transformación inversa.

c) Calcular los factores de escala h_u y h_v .

d) Obtener los vectores unitarios \overline{e}_u y \overline{e}_v .

SOLUCIÓN

a) No es ortogonal.

$$\begin{cases} x = \frac{u + 2v}{3} \\ y = \frac{v - u}{3} \end{cases}$$

c)
$$h_u = \frac{\sqrt{2}}{3}, h_v = \frac{\sqrt{5}}{3}$$

Página 14

d)
$$e_u = \frac{(1,-1)}{\sqrt{2}}, e_v = \frac{(2,1)}{\sqrt{5}}$$

48) Sea el sistema de coordenadas curvilíneas (u, v), el cual está referido al sistema cartesiano (x, y) por medio de las relaciones: u = -4x + 3y

$$v = 3x + 4y$$

- a) Verificar que el sistema (u,v) sea ortogonal.
- b) Calcular los vectores unitarios \hat{e}_u y \hat{e}_v .
- c) Calcular los factores de escala h_u y h_v .
- d) Calcular $J \left| \frac{x, y}{u, v} \right|$.

SOLUCIÓN

a) A criterio del profesor.

b)
$$\hat{e}_u = -\frac{4}{5}i + \frac{3}{5}j$$
; $\hat{e}_v = \frac{3}{5}i + \frac{4}{5}j$

c)
$$h_u = \frac{1}{5}$$
, $h_v = \frac{1}{5}$

d)
$$J\left(\frac{x,y}{u,v}\right) = \frac{1}{25}$$

49) Considere el sistema de coordenadas curvilíneas definido por las ecuaciones

$$u = 3x + y$$

$$v = x - 3y$$

- a) determinar si el sistema es ortogonal.
- b) Calcular los vectores unitarios \overline{e}_u y \overline{e}_v .
- c) Calcular los factores de escala.
- d) Determinar los jacobianos de la transformación $J\left(\frac{x,y}{u,v}\right)$ y $J\left(\frac{u,v}{x,y}\right)$

SOLUCIÓN

a) Sí es ortogonal.

b)
$$\hat{e}_u = \frac{1}{\sqrt{10}} (3i + j); \quad \hat{e}_v = \frac{1}{\sqrt{10}} (i - 3j)$$

Página 15

c)
$$h_u = \frac{1}{\sqrt{10}}$$
, $h_v = \frac{1}{\sqrt{10}}$

d)
$$J\left(\frac{x,y}{u,v}\right) = \frac{1}{10}; \quad J\left(\frac{u,v}{x,y}\right) = 10$$

50) Sea la transformación dada por

$$u = \frac{1}{\sqrt{2}}(x - y), \quad v = \frac{1}{\sqrt{2}}(x + y)$$

- a) Obtener el jacobiano de la transformación $J\left(\frac{x,y}{u,v}\right)$
- b) Determinar las ecuaciones de la transformación inversa.
- c) Dibujar en un plano UV la imagen de la región del plano XY limitada por las rectas x=0, x=1, y=0, y=1.

SOLUCIÓN

a)
$$J\left(\frac{x,y}{u,v}\right) = 1$$

b)
$$x = \frac{u+v}{\sqrt{2}}$$
; $y = \frac{v-u}{\sqrt{2}}$

c) A criterio del profesor.

- **51)** Dadas las ecuaciones de transformación x + y = u + vx y = 2u + v
 - a) Calcular los jacobianos $J\left(\frac{x,y}{u,v}\right)$ y $J\left(\frac{u,v}{x,y}\right)$
 - b) Sea la región R del plano XY limitada por las rectas x = 0, y = x 2, y = 1 Determinar la región R' del plano UV en que se transforma R y representar gráficamente a R y R'.

SOLUCIÓN

a)
$$J\left(\frac{x,y}{u,v}\right) = \frac{1}{2}$$
; $J\left(\frac{u,v}{x,y}\right) = 2$

b) A criterio del profesor.

Página 16

52) Sea la transformación $T:\begin{cases} u=2x\\ v=2y-x^2 \end{cases}$ y sea la región R del plano XY limitada por las curvas $x=1, \ 2y=1+x^2$ y $2y=x^2-2x$.

- a) Determinar si el sistema de coordenadas (u, v) es ortogonal.
- b) Graficar la región R del plano XY.
- c) Graficar la región R' del plano UV, que es la región en la cual se transforma la región R bajo la transformación T.
- d) Calcular el jacobiano: $J\left(\frac{x,y}{u,v}\right)$.
- e) Calcular el área de la región R.

SOLUCIÓN

- a) A criterio del profesor.
- b) A criterio del profesor.
- c) A criterio del profesor.
- d) $J\left(\frac{x,y}{u,v}\right) = \frac{1}{4}$.
- e) El área de la región R es $\frac{9}{8}$ unidades.

53) Dadas las ecuaciones de transformación $x = uv \cos \phi$; $y = uv sen\phi$; $z = \frac{u^2 - v^2}{2}$

- a) Obtener los factores de escala h_u , h_v , h_b .
- b) Obtener los vectores unitarios \hat{e}_{μ} , \hat{e}_{ν} , \hat{e}_{ϕ} .
- c) Determinar si el sistema curvilíneo es ortogonal.
- d) Obtener el jacobiano de la transformación $J\left(\frac{x, y, z}{u, v, \phi}\right)$.

a)
$$h_u = h_v = \sqrt{u^2 + v^2}$$
; $h_\phi = uv$

$$\hat{e}_{u} = \frac{1}{\sqrt{u^{2} + v^{2}}} \left(v \cos \phi \ i + v \sin \phi \ j + u \ k \right);$$

b)
$$\hat{e}_{v} = \frac{1}{\sqrt{u^{2} + v^{2}}} \left(u \cos \phi \ i + u \sin \phi \ j - v \ k \right);$$
$$\hat{e}_{\phi} = -\operatorname{sen} \phi \ i + \cos \phi \ j$$

c) A criterio del profesor.

d)
$$J\left(\frac{x, y, z}{u, v, \phi}\right) = u^3 v + u v^3$$

54) Sea la transformación:

$$T: \begin{cases} u = 3x + 4y \\ v = 4x - 3y \end{cases}$$

y sea R_{uv} la región del plano UV limitada por las gráficas de u=0, u=10, v=1 y v=6.

- a) Determinar si el sistema de coordenadas (u,v) es ortogonal.
- b) Trazar la gráfica de la región R_{xy} , que es la imagen de la región R_{uv} bajo la transformación T.
- c) Calcular el Jacobiano de la transformación: $J\left(\frac{x,y}{u,v}\right)$.
- d) Calcular el área de la región R_{XY} .

SOLUCIÓN

- a) Sí es ortogonal.
- c) $J\left(\frac{x,y}{u,v}\right) = -\frac{1}{25}$
- d) Área de $R_{XY} = 2u^2$

55) Sea la transformación ortogonal

$$u = ax - 2y + z$$

$$v = 3x + by - 2z$$

$$w = x - y + cz$$

Página 18

- a) Determinar los valores de las constantes a, b y c.
- b) Determinar los factores de escala h_u , h_v , y h_w .
- c) Expresar a los vectores i, j y k referidos a la base $\{\hat{e}_u, \hat{e}_v, \hat{e}_w\}$.

SOLUCIÓN

a)
$$a = -16$$
, $b = -25$, $c = 14$

b)
$$h_u = \frac{1}{\sqrt{261}}$$
; $h_v = \frac{1}{\sqrt{638}}$; $h_w = \frac{1}{\sqrt{198}}$

c)
$$i = \frac{14}{\sqrt{261}} \hat{e}_u + \frac{3}{\sqrt{638}} \hat{e}_v + \frac{1}{\sqrt{198}} \hat{e}_w$$

 $j = -\frac{2}{\sqrt{261}} \hat{e}_u - \frac{25}{\sqrt{638}} \hat{e}_v - \frac{1}{\sqrt{198}} \hat{e}_w$
 $k = \frac{1}{\sqrt{261}} \hat{e}_u - \frac{2}{\sqrt{638}} \hat{e}_v + \frac{14}{\sqrt{198}} \hat{e}_w$

56) Sea la transformación
$$T:\begin{cases} u=x+5y+6\\ v=5x-y-2 \end{cases}$$

- a) Determinar si el sistema de coordenadas (u, v) es ortogonal.
- b) Calcular los factores de escala $h_{\mathcal{U}}$ y $h_{\mathcal{V}}$.
- c) Obtener los vectores base \hat{e}_{μ} y \hat{e}_{v} .
- d) Calcular el área de la región limitada por la elipse de la ecuación $(x+5y+6)^2+(5x-y-2)^2=100$ (este inciso corresponde al tema 4).

SOLUCIÓN

57) Sea la transformación

$$T: \begin{cases} x = u + v + w \\ y = u - 2w \\ z = u - v + w \end{cases}$$

Página 19

e) Determinar si el sistema de coordenadas (u, v, w) es ortogonal.

f) Calcular los factores de escala h_u , h_v y h_w .

g) Obtener los vectores unitarios \overline{e}_u , \overline{e}_v y \overline{e}_w .

h) Expresar al conjunto de vectores $\{i, j, k\}$ en términos de los vectores \overline{e}_u , \overline{e}_v y \overline{e}_w .

SOLUCIÓN

58) Expresar el campo vectorial $\overline{F}(x, y) = (x^3 + xy^2 + 2y)i + (x^2y + y^3 - 2x)j$ en coordenadas polares.

SOLUCIÓN

$$\overline{F}(r,\theta) = (r^3)\hat{e}_{\rho} - (2r)\hat{e}_{\theta}$$
.

59) Para el cono $x^2 + y^2 - z^2 = 0$ obtener una ecuación vectorial de la superficie en coordenadas cilíndricas así como su correspondiente diferencial de área.

SOLUCIÓN

$$dS = \rho \sqrt{5} d\rho d\theta$$

60) Para las superficies cuyas ecuaciones en coordenadas esféricas son:

$$S_1: \phi = \frac{\pi}{4}$$

$$S_2 : \rho = 3$$

Determinar:

- a) El ángulo que formar S_1 y S_2 .
- b) Unas ecuaciones de la curva de intersección entre S_1 y S_2 .

SOLUCIÓN

b)
$$\phi = \frac{\pi}{4}$$
; $\rho = 3$

otras son

$$x^{2} + y^{2} = z^{2};$$
 $x^{2} + y^{2} + z^{2} = 9$
otras son
 $z = \pm \frac{3}{\sqrt{2}};$ $x^{2} + y^{2} = \frac{9}{2}$

61) Sea el sistema de coordenadas cilíndricas elípticas (u,v,z), definido por $x = a \cosh u \cos v$, $y = a \sinh u \sin v$, z = z. Determinar si dicho sistema es ortogonal.

SOLUCIÓN

Sí es ortogonal.

62) Sean los campos vectoriales:

$$\overline{F}(x, y, z) = (x^2 - 2yz)i + (xy^2)j + (x - z)k \quad \text{y} \quad \overline{G}(x, y, z) = (2y)i + (z^2)j + (2x)k$$
Obtener $(\overline{G} \square \overline{\nabla})\overline{F}$.

SOLUCIÓN

$$(\overline{G} \Box \overline{\nabla})\overline{F} = (-2z^3)i + (2y^3 + 2xyz^2)j + (2y - 2x)k$$
.

63) Sean los campos vectoriales

$$\overline{F}(x, y, z) = zi + xj + yk$$

$$\overline{G}(x, y, z) = (yz)i + (xz)j + (xy)k$$

Verificar la validez de la expresión $div(\overline{F} \times \overline{G}) = \overline{G} \square rot \overline{F} - \overline{F} \square rot \overline{G}$.

SOLUCIÓN

A criterio del profesor

64) Sea el campo vectorial: $\overline{u}(x, y, z) = (x^2yz)i + (xy^2z)j + (xyz^2)k$. Determinar la divergencia y el rotacional de \overline{u} en el punto P(1, -1, 3).

$$\overline{\nabla} \Box \overline{u} = -18 \; ; \; \overline{\nabla} \times \overline{u} = 8i + 8j$$

Página 21

65) Si
$$\overline{v} = \overline{w} \times \overline{r}$$
, verificar que: $\overline{w} = \frac{1}{2} rot \overline{v}$ siendo \overline{w} un vector constante.

SOLUCIÓN

A criterio del profesor.

66) Dada la función vectorial

$$\overline{u} = (6xy - y^2 \sin xy^2 + z^2)i + (3x^2 - 2xy \sin xy^2)j + (xz^2)k$$

Determinar la divergencia y el rotacional de la función.

SOLUCIÓN

$$\overline{\nabla} \Box \overline{u} = 6y - y^4 \cos(xy^2) - 2x \sin(xy^2) - 4x^2 y^2 \cos(xy^2) + 2xz$$

$$\overline{\nabla} \times \overline{u} = (2z - z^2) j$$

67) Determinar si el campo vectorial
$$\overline{F}(x, y, z) = (yz \cos xy)i + (xz \cos xy)j + (sen xy)k$$
 es irrotacional.

SOLUCIÓN

 \overline{F} es irrotacional.

68) Obtener la divergencia del rotacional del campo vectorial:

$$\overline{u} = \left(xze^{-y}\right)i + \left(\frac{yz}{x}\right)j + \left(xy^2z^3\right)k.$$

SOLUCIÓN

$$\overline{\nabla} \Box (\overline{\nabla} \times \overline{u}) = 0$$

69) Dada la función vectorial $u = (6xy - y^2 \sin xy^2 + z^2)i + (3x^2 - 2xy \sin xy^2)j + (2xz)k$ Determinar la divergencia y el rotacional de la función.

$$\overline{\nabla} \Box \overline{u} = 6y - y^4 \cos(xy^2) - 2x \sin(xy^2) - 4x^2 y^2 \cos(xy^2) + 2x$$

$$\overline{\nabla} \times \overline{u} = \overline{0}$$

Página 22

70) Calcular todos los valores de las constantes α y β de modo que el campo:

$$\overline{F}(x,y,z) = (-\alpha^2 x + z + 2)i + (\beta z - \alpha \beta y)j + (\alpha^2 x + \alpha y - 2\alpha z)$$

sea solenoidal e irrotacional.

SOLUCIÓN

$$\alpha = -1; \quad \beta = -1$$

71) Sea el campo vectorial
$$\overline{F}(x, y, z) = \frac{1}{\left(x^2 + y^2 + z^2\right)^2} \left(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}\right)$$
, con

 $(x, y, z) \neq (0, 0, 0)$. Utilizar coordenadas esféricas para determinar si el campo \overline{F} es:

- a) Solenoidal.
- b) Irrotacional.

SOLUCIÓN

- a) \overline{F} sí es solenoidal.
- b) \overline{F} sí es irrotacional.
- **72)** Para el campo vectorial $\overline{R}(x, y, z) = (y^3 3z^2y)i + (z^3 3zx^2)j + (3x^2y y^3)k$ calcular:
 - a) La divergencia de \overline{F} .
 - b) El rotacional de \overline{F} .
 - c) El laplaciano de \overline{F} .
 - d) El gradiente de \overline{F} .

a)
$$\overline{\nabla} \Box \overline{F} = 0$$

b)
$$\overline{\nabla} \times \overline{F} = (6x^2 - 3y^2 - 3z^2)i + (-6yz - 6xy)j + (-6xz - 3y^2 + 3z^2)k$$

c)
$$\overline{\nabla}^2 \overline{F} = \overline{0}$$

d)
$$\overline{\nabla} \ \overline{F} = \begin{bmatrix} 0 & 3y^2 - 3z^2 & -6yz \\ -6xz & 0 & 3z^2 - 3x^2 \\ 6xy & 3x^2 - 3y^2 & 0 \end{bmatrix}$$

73) Sea la función:
$$f(x, y, z) = \frac{z}{x^2 + y^2} + Ln(y^2) + e^z$$

Página 23

- a) Obtener f en función de las coordenadas cilíndricas (r, θ, z) .
- b) Obtener $\overline{\nabla} f$ en coordenadas cilíndricas.

SOLUCIÓN

a)
$$f(r,\theta,z) = \frac{z}{r^2} + 2\ln r + 2\ln(\sin\theta) + e^z$$

b)
$$\overline{\nabla} f = \left(\frac{-2z}{r^3} + \frac{2}{r}\right)\hat{e}_r + \left(\frac{2}{r}\cot\theta\right)\hat{e}_\theta + \left(\frac{1}{r^2} + e^z\right)\hat{e}_z$$

74) Determinar un vector normal a la superficie $S: r = -4\cos\theta$ en el punto P(-2,2,2).

La superficie S está dada en coordenadas cilíndricas y el punto P está en coordenadas cartesianas.

El vector normal debe estar en términos de los vectores unitarios $\overline{e_r}$, $\overline{e_{\theta}}$ y $\overline{e_z}$.

SOLUCIÓN

$$\overline{n}|_{p} = (2\sqrt{2})\overline{e}_{r} - (2\sqrt{2})\overline{e}_{\theta}$$

75) Utilizar coordenadas cilíndricas circulares para determinar el gradiente de la función $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$.

SOLUCION

$$\overline{\nabla} f = \frac{(r)\overline{e}_r + (z)\overline{e}_z}{\sqrt{r^2 + z^2}}.$$

76) Utilizar coordenadas esféricas para calcular: $\nabla^2 \ln |\bar{r} \Box \bar{r}|$ donde $\bar{r} = xi + yj + zk$.

SOLUCIÓN

$$\frac{2}{r \square r}$$

77) Dada la función $f(x, y, z) = (x^2 + y^2)^{3/2} + 2xy + e^z$, calcular el laplaciano de f en coordenadas cilíndricas circulares.

Página 24

SOLUCIÓN

$$\overline{\nabla}^2 f = 9r + e^z$$

78) Sea la función $f(r,\theta) = \ln\left(\frac{1}{r}\right)$, dada en coordenadas polares. Determinar si la función f es armónica.

SOLUCIÓN

f es armónica.

79) Determinar si la función en coordenadas esféricas $f(\rho, \theta, \phi) = \frac{2}{\rho} + 4\theta$ es armónica.

SOLUCIÓN

Sí es armónica.

80) Determinar si la función $f(\rho, \theta, \phi) = \frac{1}{\rho}$, dada en coordenadas esféricas, es armónica.

SOLUCION

Sí es armónica.

81) Determinar si la función $f(r,\theta) = 4r^2 \sin 2\theta + r \cos \theta$ es armónica.

SOLUCIÓN

A criterio del profesor.

82) Sea la función: $f(x, y, z) = \frac{y}{x}z$ utilizar coordenadas esféricas para calcular ∇f .

SOLUCIÓN

 $\overline{\nabla} f(r, \theta, \phi) = (\tan \theta \cos \phi) \hat{e}_r + (\sec^2 \theta \cot \phi) \hat{e}_\theta - (\tan \theta \sec \phi) \hat{e}_\phi$

83) Sea el campo vectorial $\overline{F}(\rho,\theta,\phi) = (\rho)\overline{e}_{\theta} + (\rho sen \phi)\overline{e}_{\phi}$ en coordenadas esféricas. Obtener el rotacional de \overline{F} .

$$\overline{\nabla} \times \overline{F} = (-\cot \phi) \overline{e}_{\rho} - (2sen\phi) \overline{e}_{\theta} + (2) \overline{e}_{\phi}$$

Página 25

84) Sea el campo $u = \frac{2\cos\theta}{\rho^3}\hat{e}_{\rho} + \frac{\sin\theta}{\rho^3}\hat{e}_{\theta} + 0\hat{e}_{\phi}$. Determinar si el campo u es solenoidal.

SOLUCIÓN

El campo \bar{u} no es solenoidal

85) Calcular, en coordenadas polares, el gradiente de la función: $f(r,\theta) = 4r\cos\theta$.

SOLUCIÓN

$$\overline{\nabla} f = (4\cos\theta)\hat{e}_r - (4\sin\theta)\hat{e}_\theta$$

86) Determinar si el campo vectorial representado por $\overline{F}(r,\theta,z) = (z \sin^2 \theta) \hat{e}_r + (2z \sin \theta \cos \theta) \hat{e}_\theta + (r \sin^2 \theta) \hat{e}_z$ es irrotacional, donde \overline{F} está expresado en coordenadas cilíndricas circulares.

SOLUCIÓN

El campo \overline{F} si es irrotacional.