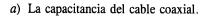
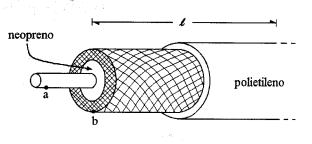

Problemas propuestos

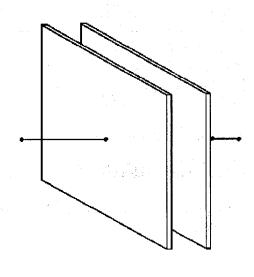

- 1. La conexión de capacitores mostrada en la figura se energizó al conectarle una diferencia de potencial entre los puntos a y d; se sabe que $C_1 = 3[\mu F]$, $C_2 = 5[\mu F]$, $C_3 = 1[\mu F]$ y $C_4 = 2[\mu F]$; además, la carga en el capacitor C_4 es 0.3[mC]. Determine:
- a) El valor de la diferencia de potencial aplicada (V_{ad}) .
- b) La energía total almacenada en la red de capacitores.

- 2. Suponga que un conjunto de capacitores se ha conectado a una fuente de fem como se indica en el circuito. Con base en la figura, en la cual los valores en $[\mu F]$ son: $C_1 = 30$, $C_2 = C_7 = 40$, $C_3 = 150$, $C_4 = C_5 = 200$, $C_6 = 400$ y $C_8 = 500$, además de que $V_{ab} = 0.5 [kV]$, calcule:
- a) La capacitancia equivalente entre los puntos a y b.
- b) La diferencia de potencial del capacitor C_3 .
- c) La energía total que almacena el conjunto de capacitores.


3. Al cable coaxial (cilindros coaxiales) mostrado en la figura se le aplica una diferencia de potencial $V_{ab} > 0$. Si el aislante utilizado entre los conductores es neopreno y considerando la información adicional, determine:

 $k_e = 2.3$

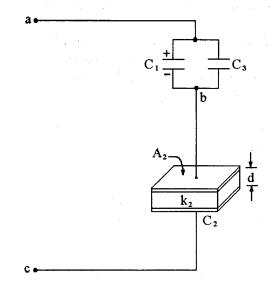
- b) El valor máximo que puede tomar V_{ab} para que el aislante no conduzca.
- c) La región en la que se presentaría primeramente el daño en el dieléctrico al aplicar el voltaje de ruptura. Justifique su respuesta.


neopreno cable coaxial
$$E_{rup} = 12 \times 10^6 [\text{V/m}] \qquad r_1 = 3 [\text{cm}]$$

$$k_e = 5.9 \qquad r_2 = 5 [\text{cm}]$$

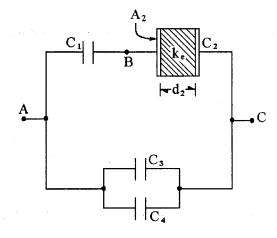
$$r_3 = 5.6 [\text{cm}]$$
 polietileno
$$\ell = 2 [\text{km}]$$

$$E_{rup} = 18 \times 10^6 [\text{V/m}]$$

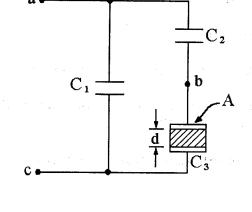

- 4. Se requiere diseñar un capacitor de placas planas y paralelas, con una capacitancia de 2[nF] y que opere adecuadamente con una diferencia de potencial de 55[V].
- a) Seleccione el dieléctrico apropiado para que el área A de cada placa sea mínima y determine dicha área.

Dieléctrico	k _e	E _{rup} [kV/m]	Espesor [mm]
1	25.2	100	1.0
2	25.2	10	1.0
3	11.3	100	0.5
4	11.3	30	2.0

5. Para el circuito mostrado en la figura en el cual $C_1 = 3[nF]$, $C_3 = 2[nF]$, $A_2 = 400[cm^2]$, d = 0.1[mm], $k_{e2} = 5$ y $\epsilon_2 = 5\epsilon_0$, determine:

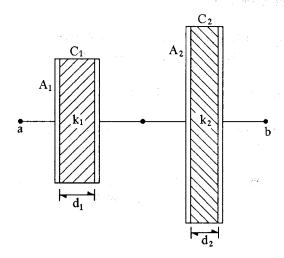

- a) El valor de C_2 .
- b) La capacitancia equivalente entre los puntos a y c.
- c) La diferencia de potencial V_{ac} , si la carga en el capacitor C_1 es 15[μ C].
- d) La energía total almacenada en el arreglo.

6. Para el circuito de capacitores mostrado en la figura en el cual:

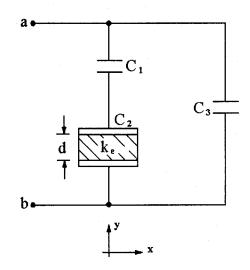

$$A_2 = 0.01 [\text{m}^2], k_e = 10 \text{ y } d_2 = 1 [\text{mm}];$$

 $V_{AC} = 200 [\text{V}], C_1 = 2 [\text{nF}] \text{ y } C_3 = C_4 = 10 [\text{nF}].$

- a) Determine el valor del capacitor C_2 .
- b) Calcule el capacitor equivalente, entre los puntos A y C.
- c) Obtenga el valor de la carga Q_2 del capacitor C_2 si se tiene un voltaje $V_{AC} = 200[V]$.

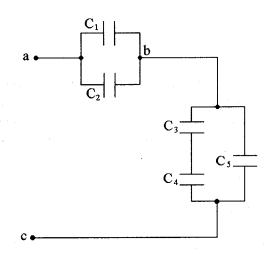

- 7. Para el arreglo de capacitores mostrado, determine:
- a) El dieléctrico necesario para que el capacitor C_3 tenga capacitancia de 1[nF] y pueda soportar una diferencia de potencial de 100[V] sin dañarse, considere A = 100[cm²] y d = 1[mm].
- b) La capacitancia C_1 para que la energía total almacenada en el arreglo sea de $10[\mu J]$, cuando $V_{ac} = 100[V]$ y $C_2 = C_3$.
- c) La carga almacenada en un capacitor C'_2 (nuevo), cuando $V_{ac} = 100[V]$ y este capacitor fuese de 10[nF].
- d) El voltaje entre los extremos del capacitor C_2 , si su capacitancia fuese de 10[nF] y $V_{ac} = 100[V]$.

Dieléctrico	k_e	$E_{rup}[kV/m]$
1	25.2	10
2	11.3	100
3	11.3	30
4	25.2	100



- 8. Para el arreglo de capacitores mostrado, con base en los datos que se proporcionan, calcule:
- a) La energía almacenada en el arreglo, si $V_{ab} = 250 [V]$.
- b) La diferencia de potencial V_{ab} máxima que es capaz de soportar el arreglo, sin que se dañen los dieléctricos.

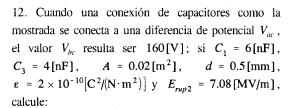
$$E_{R1} = 5 \text{ [kV/mm]}$$
, $k_1 = 10$, $A_1 = 100 \text{ [cm}^2]$, $d_1 = 0.1 \text{ [mm]}$
 $E_{R2} = 4 \text{ [kV/mm]}$, $k_2 = 25$, $A_2 = 400 \text{ [cm}^2]$, $d_2 = 0.1 \text{ [mm]}$



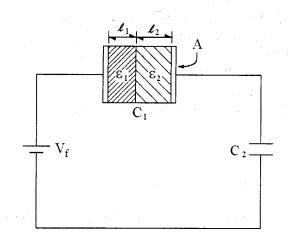
- 9. En el sistema de capacitores mostrado, en el cual $C_1 = 0.5 [\mu F]$ y $C_3 = 0.1 [\mu F]$, se sabe que la capacitancia equivalente entre los puntos a y b es $C_{ab} = 0.35 [\mu F]$, el campo eléctrico en el capacitor C_2 es $E_2 = -100\hat{j}[kV/m]$, el dieléctrico de C_2 tiene un espesor d = 0.1 [mm] y su permitividad eléctrica relativa es $k_e = 6.9$. Determine:
- a) El valor de C_2 .
- b) La diferencia de potencial V_{ab} .
- c) El área de cada placa plana del capacitor C_2 .
- d) La energía total que almacena el sistema.

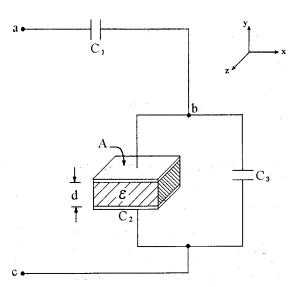
- 10. Con los capacitores $C_1 = C_2 = 47 [\mu F]$, $C_3 = C_4 = 100 [\mu F]$ y $C_5 = 10 [\mu F]$ se formó el circuito de la figura, si la diferencia de potencial entre a y c es 15[V], determine:
- a) La capacitancia equivalente entre a y c.
- b) La carga en el capacitor C_4
- c) El voltaje de trabajo máximo de C₅ si se emplea mica en este capacitor de placas planas y paralelas.

Material	Espesor [mm]	k _e	E _{rup} [MV/m]
mica	0.1	6	160
vidrio	1	4.5	13
porcelana	2	6.5	4


11. Para el circuito mostrado en la figura, donde $A = 1 \text{[cm}^2]$, $C_2 = 10 \text{[nF]}$ y la información de los dieléctricos de C_1 es:

$$\ell_1$$
 = 2[cm], ϵ_1 = 100 ϵ_0 , E_{rup1} = 10[kV/cm],


$$\ell_2 = 3 \text{[cm]}$$
, $\epsilon_2 = 500 \epsilon_0$ y $E_{rup2} = 25 \text{[kV/cm]}$.


Determine:

- a) El valor de la fuente V_f , si el voltaje del capacitor C_1 , es 1,000 [V].
- b) La energía total almacenada en el arreglo cuando $V_{c1} = 1,000[V]$.
- c) El voltaje máximo que puede tener aplicado entre sus terminales el capacitor C_1 , sin dañarse.

- a) La capacitancia de C_2 .
- b) La diferencia de potencial V_{ac} aplicada, si $Q_2 = 1.28 [\mu C]$.
- c) El desplazamiento eléctrico D en el dieléctrico de C_2 .
- d) El voltaje máximo que puede soportar el capacitor C_2 .

Respuestas de los problemas propuestos

1. a)
$$V_{ad} = 300[V]$$

b)
$$U_T = 0.045[J]$$

2. a)
$$C_{ab} = 75[\mu F]$$

b)
$$V_3 = 250[V]$$

c)
$$U_T = 9.375[J]$$

3. a)
$$C = 1.285[\mu F]$$

b)
$$V_{abm\acute{a}x} = 183,897[V]$$

c) en los puntos con $r = r_1$, ya que:

$$E_{max} = \frac{1}{4\pi\varepsilon} \frac{2\lambda}{r_{min}}$$

4. a) dieléctrico 1 y $A_{min} = 89.68 [\text{cm}^2]$

5. a)
$$C_2 = 17.7[nF]$$

b)
$$C_{ac} = 3.899[nF]$$

c)
$$V_{ac} = 6,412.43[V]$$

d)
$$U_T = 80.16[mJ]$$

6. a)
$$C_2 = 0.885[nF]$$

b)
$$C_{ac} = 20.614[nF]$$

c)
$$Q_2 = 122.7[nC]$$

7. a) dieléctrico 2

b)
$$C_1 = 1.5[nF]$$

c)
$$q_2' = 90.91[nC]$$

d)
$$V_2 = V_{ab} = 9.091[V]$$

8. a)
$$U_T = 251.42 [\mu J]$$

b)
$$V_{abmax} = 550[V]$$

9. a)
$$C_2 = 0.5[\mu F]$$

$$b) \ V_{ab} = 20[V]$$

c)
$$A = 0.8188 [m^2]$$

d)
$$U_T = 70[\mu J]$$

10. a)
$$C_{ac} = 36.623 [\mu F]$$

b)
$$q_4 = 457.8[\mu C]$$

c)
$$V_{5m\acute{a}x} = 16[kV]$$

11. a)
$$V_{\dot{f}} = 1,000.34[V]$$

b)
$$U_T = 1.697[\mu J]$$

c)
$$V_{1m\acute{a}x} = 26[kV]$$

12. a)
$$C_2 = 8[nF]$$

b)
$$V_{ac} = 480[V]$$

c)
$$\vec{D}_2 = -64\hat{j} [\mu \text{C/m}^2]$$

d)
$$V_{2m\acute{a}x} = 3.54 [kV]$$