Práctica: Aplicación de las ecuaciones diferenciales en el enfriamiento de una sustancia de acuerdo a la ley de enfriamiento de Newton.

Cuestionario Previo

- 1.- Defina los siguientes conceptos:
 - a) Calor
 - b) Temperatura
 - c) Transferencia de calor.
- 2. ¿Por qué es importante la transferencia de calor en procesos energéticos y cómo se lleva a cabo?
- 3.- Enuncie la ley de enfriamiento de Newton.
- 4.- Modele y resuelva la ecuación diferencial que representa la ley de enfriamiento de Newton.
- 5.- Defina que son condiciones iniciales y que son valores de frontera.
- 6.- Explique dos aplicaciones de la ley de Newton a la Ingeniería.
- 7.- Resuelva los siguientes ejercicios de forma clara y ordenada:
 - a) La temperatura de un motor en el momento en que se apaga es de $180 \, [^{0}C]$ y la temperatura del aire que lo rodea es de $25 \, [^{0}C]$. Después de 15 min la temperatura del motor ha bajado a $140 \, [^{0}C]$. ¿Cuánto tiempo transcurrirá para que la temperatura del motor disminuya hasta $30 \, [^{0}C]$?
 - b) Un material cerámico se saca en cierto momento de un horno cuya temperatura es de $700 \, [^{0}C]$, para llevarlo a una segunda etapa de un proceso que requiere que el material se encuentre a una temperatura de cuando mucho $150 \, [^{0}C]$. Suponga que la temperatura de una sala de enfriamiento donde se colocará este cerámico es de $10 \, [^{0}C]$ y que, después de 15 min, la temperatura del material es de $500 \, [^{0}C]$. ¿En cuánto tiempo el material cerámico estará listo para entrar a la segunda etapa de su proceso?